Estimating forest carbon fluxes for large regions based on process-based modelling - NFI data and Landsat satellite images

Sanna Härkönen, Aleksi Lehtonen, Mikko Peltoniemi, Kalle Eerikäinen, Annikki Mäkelä

Vantaa 15.12.2011

sanna.harkonen@metla.fi
Contents

- Results from the CarbBal project (2009-2011)
 - Material
 - Methods
 - Main results
 - Future development plans
Results of the Carb-Bal project
(2009-2011, Academy of Finland)

- Goal: to develop a method for predicting carbon fluxes for large regions using NFI data and satellite images
Material

- National forest inventory data (2004-2009)
 - Only the plots which consist of one stand, only the mineral soils

- Satellite images
 - Landsat 5 TM, 2007
Estimating the carbon fluxes

1. Estimates for the NFI sample plots
 - Gross primary production of carbon (GPP)
 - Net primary production of carbon (NPP)
 - Net ecosystem exchange (NEE)

2. Generalising estimates for all the forested areas using k nearest neighbour imputation

k nearest neighbour imputation

1. **Teaching data set** is created:
 - (carbon flux) estimates for the sample plots
 - Pixel colours from the satellite image for the same sample plots

2. The *k nearest neighbours* are searched for all the other pixels **in terms of similarity in the pixel colours** in the teaching data set

3. Each pixel is given the (carbon flux) estimate as an **average of the k nearest neighbours’ estimates** (as distance weighted mean etc.)
Generalisation with different imputation parameters

- Testing of
 - Different k:s (k=1…13)
 - Using 1 or 2 images from the same area as independent variables
 - Using DEM as independent variable

Optimal method: k=5, all the bands from 1 image
RESULTS: Reliability of the imputations depends on the location, site fertility and main tree species

- Slightly better results in Central Finland than in Lapland (based on leave-one-out cross validation)

<table>
<thead>
<tr>
<th></th>
<th>Central Finland</th>
<th></th>
<th>Lapland</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BIAS<sub>%</sub></td>
<td>RMSE<sub>%</sub></td>
<td>n</td>
<td>BIAS<sub>%</sub></td>
</tr>
<tr>
<td>Classifier by site fertility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMT</td>
<td>5.7</td>
<td>26.7</td>
<td>184</td>
<td>-</td>
</tr>
<tr>
<td>MT</td>
<td>2.1</td>
<td>25.9</td>
<td>566</td>
<td>-0.7</td>
</tr>
<tr>
<td>VT</td>
<td>-3.4</td>
<td>27.3</td>
<td>290</td>
<td>2.1</td>
</tr>
<tr>
<td>CT</td>
<td>-30.5</td>
<td>49.3</td>
<td>27</td>
<td>3.0</td>
</tr>
<tr>
<td>Classifier by main tree species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scots pine</td>
<td>-0.5</td>
<td>25.9</td>
<td>698</td>
<td>1.4</td>
</tr>
<tr>
<td>Norway spruce</td>
<td>2.0</td>
<td>24.7</td>
<td>230</td>
<td>-16.5</td>
</tr>
<tr>
<td>Deciduous</td>
<td>8.2</td>
<td>31.3</td>
<td>144</td>
<td>14.9</td>
</tr>
</tbody>
</table>
Estimations (left) vs. imputations (right) in Central Finland

- Imputations very scattered in the youngest stands, with old stands the estimates start to saturate

Figure 8. Distribution of reference and imputed values of GPP (left) and -NEE (right) in Lapland for 2007. The black bars denote observed values, the thick black line denotes imputations with $k=3$, the thin black line denotes imputation with $k=5$, the thick grey line denotes imputation with $k=7$ and the thin grey line imputation with $k=11$. Bands 1-5 & 7 were used as independent variables.
Eddy covariance measurements: comparisons in Hyytiälä and Sodankylä
The developed method enables production of carbon flux maps with high resolution (30 m)
Development continues in Climforisk project

- Goals
 - To **extend the estimations to cover the whole Finland**
 - To improve the growth model, e.g. by adding the **water model** (Peltoniemi & Mäkelä et al.)
 - To employ additional data sources, e.g. the soil map, local altitude variation and wetness indices to the simulations
Thank you!