

SOILN

Eckersten et al. 1998

E-mail: Henrik.Eckersten@pve.slu.se www.slu-pve.se

Models

Water and Heat

Carbon and Nitrogen

Assumptions of processes

- Photosynthesis& growth
- Decomposition, immobilization & mineralization
- Plant uptake; organic N uptake

- = $f(N, radiation, E_{TA}/E_{TP})$
- =f(SOM, C/N_{SOM}, Microbial biomass & activity, T_{soil} and θ)
- =f(Plant biomass & opt. C/N_{plant}, N deficit, SOM)

INPUTS

- Driving variables: Infiltration rates, Water flow between soil layers, T_{soil} and θ, radiation, E_{TA}/E_{TP}, (LAI, height)
- Parameters: Optimum radiation use, allocation pattern, litter production and decomposition rate, soil porosity
- Initial C and N content of all plant & soil pools

Strength & Weakness

- Process oriented
- Dynamically coupled to water and heat balances
- Well tested and calibrated

- Needs much information, parameters
- One-dimensional
- Process level:
 - No respiration costs for organic N uptake
 - All N deposition wet

Regional modeling: Detailed process oriented model Meta model produced by neural networks