Effect of the model choice for simulating soil carbon stocks and stock changes: comparison of four soil models

Patrick Faubert, Esther Thürig, Marcus Lindner, Mikko Peltoniemi, Taru Palosuo, Oleg Chertov, Alexander Komarov, Alexey Mikhailov, Felicitas Suckow, Petra Lasch, Martin Wattenbach, Pete Smith, Pia Gottschalk
Contents

Introduction and research questions

Material and methods

Results and discussion

Conclusion
European forests at the moment → C sink/source

Sink/source role dependent on:

- Natural / Anthropogenic disturbances
- Forest management
- Climate change
Soil C flux assessments:

- Measurements: time consuming and expensive
- Soil C models: assumptions, simplification of the reality, various time and space scales, specific

BUT different models → different results
Objective

Evaluation of model effects on the assessment of C stocks and stock changes in forest soils
Research questions

- What is the effect of the initialization of C stocks on the simulation of the soil C fluxes?
- How does the choice of the model affect the stock change assessment?
Material and methods

- Comparison of 4 soil C models
 - FORESEE - 4C
 - ROMUL
 - Rothamsted Carbon Model – RothC
 - Yasso
Material and methods

- Comparison of 4 soil C models

 - FORESEE - 4C: ✔ Process-based
 ✔ Simulations down to rooting depth
 ✔ Daily soil C dynamic
Material and methods

- Comparison of 4 soil C models
 - ROMUL: ✓ Process-based
 ✓ Simulations down to 1 m
 ✓ Monthly soil C dynamic
Material and methods

- Comparison of 4 soil C models

 - Rothamsted Carbon Model – RothC:
 - Process-based
 - Simulations down to 40 cm
 - Monthly soil C dynamic
Material and methods

- Comparison of 4 soil C models
 - Yasso: ✓ Dynamic soil C model
 ✓ Simulations down to 1 m
 ✓ Yearly soil C dynamic
Study sites

FIN-VT-pine
FIN-MT-pine
FIN-MT-spruce
FIN-OMT-spruce

DE-Cho-pine
DE-Aug-spruce
Study sites

|-------------|-------------|-------------|---------------|---------------|---------------|-------------|

Stand and soil data

<table>
<thead>
<tr>
<th>Moisture/ nutrient</th>
<th>Subxeric</th>
<th>Mesic</th>
<th>Mesic</th>
<th>Rich</th>
<th>Wet/ moderate</th>
<th>Dry/ moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand age</td>
<td>36</td>
<td>75</td>
<td>55</td>
<td>65</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>Basal area m(^{-2}) ha(^{-1})</td>
<td>22</td>
<td>31</td>
<td>28</td>
<td>25</td>
<td>43</td>
<td>38</td>
</tr>
</tbody>
</table>
Contents

Introduction and research questions
Material and methods
Results and discussion
 Initial C stocks
 Litter time series of 4C and EFIMOD
 C in the organic, mineral and total soils
Conclusion
Initial C stocks [kg C m⁻²]

|----------------|--------------|--------------|----------------|------------------|----------------|--------------|

| 4C / ROMUL | 3.4 | 4.1 | 4.4 | 11.2 | 9.5 | 10.7 |

- Measured total soil C

| Depth (cm) | 40 | 95 | 200 |

| RothC | 1.9 | 2.4 | 3.2 | 9.7 | 1.9 | 6.4 |

- Measured C in mineral soil down to 40 cm
Initial C stocks [kg C m\(^{-2}\)] - Yasso

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average 4C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litter</td>
<td>5.6</td>
<td>3.6</td>
<td>4.6</td>
<td>5.4</td>
<td>7.7</td>
<td>12.0</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFIMOD Litter</td>
<td>4.3</td>
<td>7.6</td>
<td>4.0</td>
<td>10.2</td>
<td>11.4</td>
<td>7.6</td>
</tr>
<tr>
<td>Stand age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young stand</td>
<td>2.7</td>
<td>3.7</td>
<td>4.9</td>
<td>7.2</td>
<td>12.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Rich soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old stand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured C</td>
<td>3.4</td>
<td>4.1</td>
<td>4.4</td>
<td>11.2</td>
<td>9.5</td>
<td>10.7</td>
</tr>
<tr>
<td>Stand age</td>
<td>36</td>
<td>75</td>
<td>55</td>
<td>65</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>
Litter time series – 4C and EFIMOD

4C litter \rightarrow \text{stem mortality}
Litter time series – 4C and EFIMOD

Young stands (VT → 36y, Cho → 50y) + high density (BA Cho=38 m⁻²ha⁻¹)
C in the organic layer

ROMUL peak increases wood litter input to the organic layer.
C in total soil and mineral layer: 4C litter

FIN-VT-pine

FIN-OMT-spruce

DE-Cho-pine

RothC: high C

Initial C in mineral layer (9.7) similar to total C (11.2)

Yasso lower

ROMUL: effects remaining from 4C litter peaks

SOC in total and mineral soils [kg C m$^{-2}$]
C stock changes in 20 years

RothC/Yasso < 4C/ROMUL → Equilibrium vs none

Stock changes in 20 years [kg C m⁻²]

+ : C sink - : C source
Annual C stock changes [g C m\(^{-2}\) a\(^{-1}\)]

<table>
<thead>
<tr>
<th>Median values</th>
<th>Total soil C</th>
<th>C mineral layer</th>
<th>Minimum total C</th>
<th>Maximum total C</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combinations (sites/model/litter)</td>
<td>18.1</td>
<td>7.8</td>
<td>-44.4</td>
<td>120.5</td>
</tr>
<tr>
<td>4C</td>
<td>145%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROMUL</td>
<td>-49%</td>
<td></td>
<td></td>
<td>High sensitivity of the model choice</td>
</tr>
<tr>
<td>RothC</td>
<td>87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yasso</td>
<td>-49%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

Introduction and research questions

Material and methods

Results and discussion

Conclusion
Conclusion

What is the effect of the initialization of C stocks on the simulation of the soil C fluxes?

- Initialization with measured soil C if available

 → 4C and ROMUL similar trends for total soil C

- Initialization with litter input: easily available

 → Yasso: forest soils often not in equilibrium with the actual stand
Conclusion

How does the **choice of the model** affect the stock change assessment?

- High sensitivity

- Annual stock changes different from -49% to 145%

- **Simulations on small vs. large scales**

 - On small scales, high accuracy with detailed data
 - On large scales, detailed data are often not available

 ➥ Data availability strongly influences the model choice
Further research

- Comparison with long-term soil C measurements
Acknowledgements

- Funds of CarboInvent project EVK2-2002-00157
- EU-INCO project OMRISK 0103388 funds attributed to O.Chertov, A.Komarov and A.Mikhailov
- All the authors for the pleasant collaboration 😊
Thank you for your attention!

Kiitos seurasta!