Silva Fennica : regular issues : 43(3) : sa433433.htm

Henrik Heräjärvi. 2009.

Effect of drying technology on aspen wood properties

Silva Fennica 43(3): 433–445

This article reports the impacts of three different drying treatments on selected physical and mechanical properties of European (Populus tremula L.) and hybrid (P. tremula x tremuloides) aspen wood. The material originates from 5 European aspen stands and 7 hybrid aspen stands in southern and central Finland. After processing the logs at a saw mill, sawn timber samples were dried using 1) conventional warm air drying, 2) press drying, or 3) heat treatment into Thermo-S grade by the Finnish Thermowood® method. Finally, small clearwood specimens were manufactured from different within-stem positions for the measurements of physical and mechanical properties. Both press dried and heat treated specimens absorbed water at significantly slower pace than the conventionally dried specimens. In normal climate, the conventionally dried, press dried and heat treated specimens conditioned at equilibrium moisture contents of 12.2, 8.7, and 8.9 per cent, respectively. It appears that the butt logs between 2–6 metres contain the lightest and, thus, weakest wood in aspen stems. Radial compression strength was at its highest in heat treated specimens, whereas conventionally and press dried specimens did not differ from each other. Press dried specimens had the highest longitudinal compression strength, also heat treated specimens showed higher values than the conventionally dried ones. Radial Brinell hardness of press dried specimens was higher than that of conventionally dried or heat treated specimens. Both modulus of elasticity and modulus of rupture were at their highest in press dried specimens. Irrespective of the drying treatment, the tangential shear strength of European aspen specimens was approximately 5% higher than that of hybrid aspen. Heat treated specimens indicated significantly lower tangential shear strength values than the conventionally dried ones. In case of both aspen species, the longitudinal tensile strengths of heat treated specimens were significantly lower than those of conventionally and press dried specimens. Heat treated specimens had the highest variability among the results. The inherent flaws in aspen wood material, e.g., wetwood and density fluctuations, increase especially the property variability of heat treated wood.

heat treatment, modification, press drying, stability, strength

Metla, Joensuu Research Unit, Box 68, FI-80101 Joensuu, Finland. E-mail henrik.herajarvi(at)

Received 2 June 2008 Revised 27 October 2008 Accepted 7 November 2008
ISSN 0037-5330

Full text